Convex Inequalities without Constraint Qualification nor Closedness Condition, and Their Applications in Optimization
نویسنده
چکیده
Given two convex lower semicontinuous extended real valued functions F and h de ned on locally convex spaces, we provide a dual transcription of the relation
منابع مشابه
Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملComplete Dual Characterizations of Optimality and Feasibility for Convex Semidefinite Programming
A convex semidefinite programming problem is a convex constrained optimization problem, where the constraints are linear matrix inequalities, for which the standard Lagrangian condition is sufficient for optimality. However, this condition requires constraint qualifications to completely characterize optimality. We present a necessary and sufficient condition for optimality without a constraint...
متن کاملOn Constraint Qualification for an Infinite System of Convex Inequalities in a Banach Space
For a general infinite system of convex inequalities in a Banach space, we study the basic constraint qualification and its relationship with other fundamental concepts, including various versions of conditions of Slater type, the Mangasarian–Fromovitz constraint qualification, as well as the Pshenichnyi–Levin–Valadier property introduced by Li, Nahak, and Singer. Applications are given in the ...
متن کاملGlobal Error Bounds for Systems of Convex Polynomials over Polyhedral Constraints
This paper is devoted to study the Lipschitzian/Holderian type global error bound for systems of many finitely convex polynomial inequalities over a polyhedral constraint. Firstly, for systems of this type, we show that under a suitable asymtotic qualification condition, the Lipschitzian type global error bound property is equivalent to the Abadie qualification condition, in particular, the Lip...
متن کاملA closedness condition and its applications to DC programs with convex constraints
This paper concerns a closedness condition called (CC), requiring a convex function and a convex constrained system. This type of condition has played an important role in the study of convex optimization problems. Our aim is to establish several characterizations of this condition and to apply them to study minimizing problems involving a DC function under a cone-convex constraint and a set co...
متن کامل